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1
Basics of Probability

• A quick review of sets and set theory may be useful:

– A set is a collection of unordered elements. Elements do not need to be numbers; for example,
{Blue, Gold} is the set of official Berkeley colors (go bears!)

– The union of two sets is the set containing all the elements of each set, and the intersection of
two sets is the set containing elements common to both sets. For example, if A = {1, 2, 3} and
B = {2, 3, 4} then A ∪B = {1, 2, 3, 4} and A ∩B = {2, 3}.

– The empty set (denoted ∅) is the set containing no elements. Two sets are said to be mutually
exclusive (or disjoint) if A ∩B = ∅.

– A subset A of a set B is a set containing some (possibly all) of the elements in B. For example,
{2, 4} ⊆ {1, 2, 3, 4}. Two sets A and B are said to be equal if A ⊆ B and B ⊆ A.

– Here is a summary of some set-related concepts:

Union A ∪B := {x : x ∈ A or x ∈ B}
Intersection: A ∩B := {x : x ∈ A and x ∈ B}
Difference: A\B := {x : x ∈ A and x /∈ B}
Subset: A ⊆ B x ∈ A =⇒ x ∈ B
Equality: A = B A ⊆ B and B ⊆ A
Proper Subset: A ⊂ B A ⊆ B and A 6= B

• The outcome space (denoted Ω) is the set containing all possible outcomes of a particular setup.
Events are simply subsets of the outcome space.

– If all events A ⊆ Ω are equally likely, we define the probability of the event A to be

P(A) =
#(A)

#(Ω)

Here #(·) denotes the number of elements in a set.

– A set of pairwise disjoint events {B1, . . . , Bn} (that is, Bi ∩ Bj = ∅ for any i 6= j) is said to
partition the event B if

n⋃
i=1

Bi = B1 ∪ · · · ∪Bn = B

• The three axioms of probability state

(a) P(A) ≥ 0 for any A ⊆ Ω

(b) P(Ω) = 1

(c) For mutually exclusive events A and B, P(A ∪B) = P(A) + P(B).

– Define the complement of an event A to be the unique event A (sometimes notated A{) such
that {A,A} partitions the outcome space Ω. Then, by axioms (b) and (c), we have that

P(A) = 1− P(A)



Page 3 of 9

• The inclusion-exclusion rule provides a way to compute the probability of the union of events, even
if the events are not mutually exclusive. For 2 events A and B, we have

P(A ∪B) = P(A) + P(B)− P(A ∩B)

More generally, for n events A1, . . . , An we have

P

(
n⋃
i=1

Ai

)
=

n∑
i=1

P(Ai)−
∑
i<j

P(Ai ∩Aj) +
∑
i<j<k

P(Ai ∩Aj ∩Ak)− · · ·+ (−1)n+1P

(
n⋂
i=1

Ai

)

• Conditional probabilities are probabilistic quantities that reflect some change to the outcome space.

P(A | B) =
#(A ∩B)

#(B)
=
P(A ∩B)

P(B)

The multiplication rule states that P(A ∩B) = P(A | B)P(B)

– Two events A and B are said to be independent (notated A ⊥ B) if P(A | B) = P(B).
Alternatively, A ⊥ B if and only if P(A ∩B) = P(A) · P(B).

– Probability Trees can be useful in keeping track of conditional probabilities.

∗ For example, suppose 7% of a population has a disease. Of those who have the disease, a test
correctly identifies them as disease-positive 75% of the time. Of those who do not have the
disease, the test correctly identifies them as disease-negative 95% of the time. The tree for
this situation would be as follows:

◦

C
−0.95

+0.05
0.93

C
−0.25

+0.75

0.07

Here, C denotes the event {person is actually a carrier}, + denotes the event {the test tests
positive}, and − denotes the event {the test tests negative}.

• The Rule of Average Conditional Probabilities (also known as the Law of Total Probability)
states that, for a partition {B1, . . . , Bn} of the outcome space Ω,

P(A) =

n∑
i=1

P(A | Bi)P(Bi) = P(A | B1)P(B1) + · · ·+ P(A | Bn)P(Bn)

That is, the probability of any event A can be computed as a weighted average of the probabilities of
each event in a partition of Ω.

• Bayes’ Rule provides another tool for evaluating conditional probabilities:

P(B | A) =
P(A ∩B)

P(A)
=
P(A | B)P(B)

P(A)

=
P(A | B)P(B)∑n
i=1P(A | Bi)P(Bi)

where {B1, . . . , Bn} is a partition of Ω.
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2
Random Variables and Distributions

• A random variable can be thought of as a measure of some random process. For example, if X
denotes the number of heads in 2 tosses of a fair coin, then X is a random variable. The key idea is
that X can take on different values, each with different probabilities.

• The support of a random variable is the set of all values the random variable is allowed to attain. For
example, in the coin-tossing example above, X can be either 0, 1, or 2; it is impossible to toss 2 coins
and observe more than 2 heads (or negative heads, for that matter).

• A p.m.f. (probability mass function) is an enumeration of the values of P(X = k) where X is a
random variable and k is a value within the support of X. For instance, in the coin-tossing example:

k 0 1 2
P(X = k) (1/2)2 (1/2) (1/2)2

The key to constructing tables (like the one above) is to translate each event into words. For example,
{X = 2} means “I toss two heads in two tosses of a fair coin.” In this wording, it is clearer how to
compute the associated probability.

– The table above can be equivalently expressed as

P(X = k) =

{(
2
k

)
(1/2)

k
if k = 0, 1, 2

0 otherwise

– The cumulative mass function (CMF; notated FX(x)) is defined to be P(X ≤ x); the survival
(sometimes notated FX(x)) is defined to be P(X > x).

• A joint PMF quantifies the probabilities associated with two related random variables, and is denoted
P(X = x, Y = y).

– Random variables X and Y are said to be independent (denoted X ⊥ Y ) if P(X = x, Y = y) =
P(X = x)P(Y = y).

– A series of random variables X1, . . . , Xn are said to be pairwise-independent if Xi ⊥ Xj for
i 6= j. Note that pairwise independence does not imply independence, whereas independence does
imply pairwise independence.

– The discrete convolution provides a way of identifying the PMF of a sum of two random
variables:

P(X + Y = s) =

s∑
k=0

P(X = k, Y = s− k)

• The expected value (or expectation) of a random variable is a measure of central tendency, and is
defined to be

E(X) :=
∑

k∈ support

k · P(X = k)

The variance of a random variable is a measure of how “wide” a distribution is, and is defined to be

Var(X) := E
{

[X − E(X)]2
}

= E(X2)− [E(X)]
2

The standard deviation is simply the square-root of variance: SD(X) :=
√

Var(X).

– Expectation is linear: E(aX + b) = aE(X) + b. Variance is not: Var(aX + b) = a2Var(X).
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– The expectation of a function of a random variable is given by the Law of the Unconscious
Statistician (or LOTUS):

E[g(X)] =
∑

k∈ support

g(k)P(X = k)

– For independent events X1, . . . , Xn, we have

Var

(
n∑
i=1

Xi

)
=

n∑
i=1

Var(Xi)

If the events are not independent, the formula becomes a bit more complicated and requires
material from chapter 6.

• There are two inequalities which can be used to identify an upper bound of probabilities without any
knowledge of the underlying distribution:

– Markov’s Inequality: P(X ≥ a) ≤ E(X)

a
if X ≥ 0, and if a > 0.

– Chebyshev’s Inequality: P [|X − E(x)| ≥ k · SD(X)] ≤ 1

k2
, for k > 0, and provided that the

support of X contains only nonnegative numbers.

kσ kσ

E(X)

Probability ≤ 1/k2

• An indicator random variable is a random variable defined as

1A =

{
1 if A occurs

0 If A does not occur

In this way, P(1A = 1) = E(1A) = P(A occurs).

– Indicators are particularly useful in measuring counts. For example, let X denote the number of
heads in 10 tosses of a p−coin. Then

X =

n∑
i=1

1Ti where 1Tk =

{
1 if ith toss lands heads

0 if ith toss lands tails

– More abstractly, say X = 1A+1B+1C+1D. Further suppose that events A and C have occurred,
whereas B and D have not. Then 1A = 1C = 1 and 1B = 1D = 0, so X = 1 + 0 + 1 + 0 = 2,
which is precisely the number of events that have occurred.

3
Counting and Combinatorics

• Suppose we wish to pick k objects from a total of n objects. For illustrative purposes, say we wish to
pick 3 letters from the set of n = 5 letters {a, b, c, d, e}.
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– If order matters (i.e. {a, b, c} is not considered the same thing as {b, c, a}) then the number of
ways to do this is (

n

k

)
=

n!

k!(n− k)!

– If order does not matter (i.e. {a, b, c} is considered the same thing as {b, c, a}), then the number
of ways to do this is

(n)k =
n!

(n− k)!
= n× (n− 1)× · · · × (n− k + 1)

• Always pick like objects together! It may be useful to demonstrate this through example. Given a
poker hand of 5 cards drawn from a standard 52-card deck, we wish to compute the number of full
houses. A full house is defined to be 3 cards of one rank, and 2 cards of another rank. For example,

A

A

♥ ,

A

A

♦ ,

A

A

♠ ,

4

4

♣ ♣
♣♣

,

4

4

♦ ♦
♦♦


We first find the number of ways to pick 3 cards from the first rank (in our example above this would
be the number of ways to pick 3 aces from the deck): this number is

(
4
3

)
. Then we find the number of

ways to pick 2 cards from the second rank (in our example above this would be the number of ways to
pick 2 four’s from the deck): this number is

(
4
2

)
.

Finally, we need to count the number of possible ranks we could have chosen for the three-of-a-kind:
this is

(
13
1

)
. Then, from the remaining 12 ranks we pick one to be the rank of the two-of-a-kind:

(
12
1

)
.

Putting everything together, the number of full houses is(
13

1

)
︸ ︷︷ ︸

pick the rank
of the three-of-a-kind

×
(

4

3

)
︸︷︷︸

pick the cards
in the three-of-a-kind

×
(

12

1

)
︸ ︷︷ ︸

pick the rank
of the two-of-a-kind

×
(

4

2

)
︸︷︷︸

pick the cards
in the two-of-a-kind

4
Approximations to the Binomial Distribution

• The Standard Normal Distribution is an example of a continuous distribution (continuous distri-
butions will be discussed further after the midterm). The standard normal distribution (notated
N (0, 1)) has probability density function (the continuous analog of p.m.f’s)

φ(z) :=
1√
2π
e−

1
2 z

2

and has cumulative density function (the continuous analog of c.m.f’s)

Φ(x) :=
1√
2π

ż x

−∞
e−

1
2x

2

dx

The normal distribution (notated N (µ, σ2)) is a nonstandardized version of the standard normal
distribution with p.d.f.

1√
2πσ2

e−
1

2σ2
(x−µ)2

If X ∼ N (µ, σ2) then (
X − µ
σ

)
∼ N (0, 1)
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– Suppose X ∼ Bin(n, p). If p is not too small and if n is very large, then X is well approximated
by the N (np, np(1− p)) distribution.

– When using the normal approximation, it is advised to use the continuity correction to account
for the fact that we are approximating a discrete random variable with a continuous one. Letting
X ∼ Bin(n, p), we have

P(X ≤ a) ≈ Φ

(
[a+ 0.5]− np√

np(1− p)

)

P(X ≥ b) = 1− P[X ≤ (b− 1)] ≈ 1− Φ

(
[b− 0.5]− np√

np(1− p)

)

– Quantiles of the normal distribution cannot be obtained analytically; the use of a table (or com-
puting software) is required.

• The Poisson Distribution (notated Pois(µ)) is a discrete distribution with p.m.f.

P(X = x) = e−µ · µ
x

x!
x ∈ {0, 1, 2, . . . }

– If X ∼ Bin(n, p) and p is very small or very large, then X is not well-approximated by a normal
distribution and is better approximated by a Pois(np) distribution.

• Example: Consider a coin that lands heads with probability p = 0.4. If I toss this coin 100 times
and let X denote the number of heads in these 100 tosses, then X is approximately N (40, 24) and the
probability of tossing 30 or less heads is approximately

Φ

(
30.5− 40√

24

)
≈ 0.02623975

The exact answer, using the binomial distribution directly, is 0.02061342 so we see the error in approx-
imation is quite small.

• For the Mathematically Curious: You might ask what we mean when we say that a distribution
“approximates” another distribution. This is actually a deeper question that delves into topics relating
to notions of convergence, and will be discussed further in Stat 135. If you’re curious, you can look
up the topics of convergence in distribution and convergence in probability.

5
Tips & Tricks

• When asked to compute the expectation of a quantity, there are three main tricks you can use:

(i) The definition of expectation. Though sometimes useful, this often leads to a lot of algebra
(which in turn can lead to errors!).

(ii) Indicators. Again, if there’s a count involved, see if you can use indicators.

(iii) Relations. If you’re trying to find E(X), can you write X as the sum of other known random

variables? For example, if X ∼ Bin(2, p) you can write X = B1 +B2 where B1, B2
i.i.d.∼ Bern(2, p)

so E(X) = E(B1 +B2) = E(B1) + E(B2) = 2p. This is a lot easier than using the definition!

• Maxes go with CMF’s, Min’s go with Survivals. Consider random variables X1, X2, X3. If the
max of these RV’s is less than k, it automatically follows that all three RV’s must also be less than k.
Similarly, if the minimum is greater than c, all three RV’s must be greater than c.



Page 8 of 9

– B Be careful though! A common mistake is to write something like this:

P(max{X1, X2, X3} ≥ k) =⇒ P(X1 ≥ k,X2 ≥ k,X3 ≥ k)

This is wrong!!! Suppose X1 = 2, X3 = 5, and X4 = 7. Here, max{X1, X2, X3} ≥ 3 however
not all three RV’s are greater than 3!

6
Exercises

Problem 1: Use what you know about distributions to evaluate each of the following sums:

(a)

∞∑
k=0

1

k!

(c)

∞∑
k=r

(
k − 1

r − 1

)
(1− p)k−r

(b)

n∑
k=0

(
n

k

)

(d)

n∑
k=0

[(
n

k

)]2
Problem 2: At a carnival, 100 raffle tickets are divided equally among the 20 participants.

Of these 100 tickets, 5 of them are winning tickets. Compute the probabilities
of the following events:

(a) One participant receives all 5 winning tickets.
(b) There are exactly two winners (that is, only two people have winning

tickets)

Problem 3: Suppose that 3% of the population has a certain disease. A test for the disease
exists, however it is relatively imperfect: 20% of the time the test returns an
inconclusive result, regardless of whether the person has or does not have the
disease. Furthermore, 10% of the people who have the disease test negative,
and 8% of people who are disease-free test positive. Given that a person tested
positive, what is the probability that they have the disease?

Problem 4: Hint: Apply the discrete
convolution formula to find
P (X1 + X2 = k), and recognize
the resulting expression as the
PMF of a known distribution.

If X1, X2
i.i.d.∼ Geom(p) on {0, 1, 2, ...}, identify the distribution of (X1 +X2).

Problem 5: Consider n independent events A1, A2, A3, ..., An, where P (Ai) = pi, for i =
1, 2, ..., n.

(a) Compute P(A1|A2 ∪A3).

(b) Find a simple expression for P (
⋃n
i=1Ai) that does not involve a summa-

tion (that is, don’t use the Inclusion-Exclusion Rule).

Problem 6: Alfred and Anne both (independently) roll a fair k−sided die. Let X denote
the result of Alfred’s roll and let Y denote the result of Anne’s roll. Defining
Z := max{X,Y }, find P(Z = z).
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7
Answers to Exercises

Problem 1: (a) e (Use the Poisson distribution)

(b) 2n (Use the Binomial distribution)

(c) p−r (Use the Negative Binomial distribution)

(d)
(
2n
n

)
(Use the Hypergeometric distribution)

Problem 2: (a)
(20

1 )(5
5)

(100
5 )
≈ 1.328× 10−6

(b)
(20

1 )(5
1)(

19
1 )(5

4)+(20
1 )(5

2)(
19
1 )(5

3)
(100

5 )
= (20)2

(5
1)(

5
4)+(5

2)(
5
3)

(100
5 )

Problem 3:
(0.7)(0.03)

(0.7)(0.03) + (0.08)(0.97)

Problem 4: (X1 +X2) ∼ NegBin(2, p)

Problem 5: (a)
p1p2 + p1p3 − p1p2p3

p2 + p3 − p2p3
(b) 1−

∏n
i=1 pi

Problem 6:
(z + 1)2 − z2

4
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