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1
Inferential Statistics

• A population is too large to be observed in its entirety; as such, we must use samples to explore
properties of the population.

– The gold-standard of sampling is a Simple Random Sample, in which observations are taken
independently of each other, from identical distributions.

– Other sampling techniques include stratified sampling, and cluster sampling.

• Population parameters are deterministic quantities pertaining to the population; their exact values
can never be determined exactly, and must be estimated using estimators (which are functions of
data).

– Bias measures “how far off” an estimator is from the parameter it is estimating. Mathematically,
if θ̂ is an estimator for θ, we write Bias(θ̂, θ) = E(θ̂)− θ.

• Confidence Intervals provide a way of quantifying uncertainty, specifically with respect to estima-
tions of population parameters.

• The Central Limit Theorem provides information on the asymptotic behavior of the sample mean.

• Samples are generally taken without replacement, and observations are therefore (technically) depen-
dent. However, as the sample size increases, the dependence between observations tends towards 0.

– The finite population correction factor relates samples drawn without replacement to those
drawn with replacement. When the sample size is very large, the finite population correction
factor is approximately 1.

2
Parameter Estimation

• Two popular estimators of population parameters are the Method of Moments (MoM) estimator
and the Maximum Likelihood Estimator (MLE).

– MLE’s satisfy the equivariance property (sometimes called the invariance property), which

states that f̂(θ)ML = f(θ̂ML) (provided f satisfies certain mathematical properties).

– The variance of the MoM estimator can be approximated using the method of propagation of
errors (also known as the δ-method).

– The asymptotic variance of the MLE is [In(θ)]−1, where In(θ) is the Fisher information of the
sample.

• The Cramér-Rao Lower Bound (CRLB) provides a lower bound on the variance of any unbiased
estimator of a population parameter (under certain regularity conditions).

– Estimators whose variance are exactly equal to the CRLB are said to be efficient.

• Sufficient Statistics are functions (of data) that contain all the information about a parameter θ,
given a sample. Mathematically, they induce a partition of the sample space that is finer than (or as
fine as) the likelihood function. A Minimal Sufficient Statistic is a sufficient statistic that partitions
the sample space in the coarsest manner.

– Sufficient statistics are not unique, whereas minimally sufficient statistics are.1

1Technically, if T and U are both minimally sufficient statistics then there exists a one-to-one function φ such that T = φ(U),
so it would be more mathematically rigorous to say T ∼ U rather than T = U .
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– Sufficient statistics are typically found using the Factorization Theorem.

• An estimator θ̂n of θ is said to converge in probability to θ if P(|θ̂n − θ| ≥ ε) → 0 as n → ∞.

Convergence in probability is notated as: θ̂n
p→ θ.

– Compare this with convergence in distribution: a sequence {Xi}ni=1 is said to converge in
distribution to a random variable X if

lim
n→∞

FXn(x) = FX(x)

Convergence in distribution is weaker than convergence in probability.

• An estimator θ̂ is said to be a consistent estimator of a parameter θ if θ̂
p→ θ.

– As an example: under certain regularity conditions, the MLE is consistent.

• Given an estimator θ̂ of a parameter θ, a “better” (i.e. lower-variance) estimator can always be obtained
by conditioning on a sufficient statistic. This is known as Rao-Blackwellization.

• The bootstrap provides another method for parameter estimation.

– In the nonparametric bootstrap, no assumptions are made about the underlying distribution.
The sampling distribution is approximated by repeatedly sampling (with replacement) from the
original sample, and the remainder of inference is conducted as before.

– In the parametric bootstrap, assumptions are made about the underlying distribution. The
parameters of said distribution are computed from the original sample, and the sampling distri-
bution is approximated by repeatedly generating samples from the assumed distribution (with
the estimated parameters plugged in).

3
Hypothesis Testing

• The null hypothesis is chosen to represent the status quo; the alternative hypothesis provides a
theory contrary to the null hypothesis. The goal of hypothesis testing is to determine which of the
two hypotheses better describes the current state.

• There are several terms and notations associated with hypothesis testing:

– Level of Significance (α): P(reject H0 | H0 is true)

∗ The event {(reject H0 | H0 is true} is known as a Type I Error

– Power [of a test] (1− β): P(fail to reject H0 | H0 is false)

∗ The event {(fail to reject H0 | H0 is false} is known as a Type II Error

State of H0

True False
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Reject Type I No Error

Fail to Reject No Error Type II

µ0 µ1C

1 − β

α

Distribution under
H0

Distribution under
H1

• The Neyman-Pearson Lemma states that the Generalized Likelihood Test is uniformly most
powerful.

• Hypothesis testing and confidence intervals are equivalent.
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• p−values are always constructed “under the null;” that is, they are computed after assuming the null
hypothesis is true.

• The rejection region is the set of values of a test statistic that lead to rejection of the null: R =
{xi : test at xi rejects H0}.

4
Partitioning the Sample Space

• A partition can be thought of a grouping structure that groups like elements together. For example,
consider the likelihood function of our scenario above:

p(θ) =

3∏
i=1

p(xi; θ) =

3∏
i=1

θxi(1− θ)1−xi = θ
∑3

i=1Xi(1− θ)3−
∑3

i=1Xi

• There are only 8 possible configurations of our data (X1, X2, X3); let us enumerate them all:

{(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)}

The set of all possible configurations of data is called the sample space. So, the set above would be
the sample space of our example.

• Each of these 8 possibilities corresponds to a different value of T :

(X1, X2, X3) (0, 0, 0) (0, 0, 1) (0, 1, 0) (1, 0, 0) (0, 1, 1) (1, 0, 1) (1, 1, 0) (1, 1, 1)
T (X1, X2, X3) 0 1 1 1 2 2 2 3

• Here, we can see how the statistic T induces a partition: it is natural to group all T = 0 terms together,
all T = 1 terms together, and all T = 2 terms together.

• More generally, a partition is a collection of sets {B1, . . . , Bn}. A partition is defined to be sufficient if
f(xi | X1, . . . , Xn ∈ B) does not depend on θ. By “the partition induced by T”, we mean the partition
consisting of elements {t : T (X1, X2, X3) = t} for all possible values of t. Therefore, for a statistic to
be sufficient, the partition it induces must be sufficient.

• Algorithmically, to determine whether or not a partition is sufficient, we compare it to the partition
induced by the conditional probability P(X1, X2, X3 = (x1, x2, x3) | T ). For example,

p[(0, 0, 1) | T = 1] =
P(X1 = 0, X2 = 0, X3 = 0 | T = 1)

P(T = 1)
=

θ(1− θ)2

θ(1− θ)2 + θ(1− θ)2 + θ(1− θ)2
=

1

3

Iterating through the 8 possibilities, we obtain the following table:

(X1, X2, X3) T (X1, X2, X3) p(X1, X2, X3)

(0, 0, 0) 0 (1−θ)3
(1−θ)3 = 1

(0, 0, 1) 1 1/3
(0, 1, 0) 1 1/3
(1, 0, 0) 1 1/3
(0, 1, 1) 2 1/3
(1, 0, 1) 2 1/3
(1, 1, 0) 2 1/3
(1, 1, 1) 3 1

Clearly the partition induced by T =
∑
Xi does not depend on θ; hence T is sufficient.
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• As an example of a non-sufficient (or insufficient) statistic for θ, consider T2 = X1. Let us also
examine one of the conditional probabilities in more detail:

p [(0, 0, 0) | T = 0] =
P(X1 = 0, X2 = 0, X3 = 0 | T = 0)

P(T = 0)
= (1− θ)2

Here is the full partition induced by this statistic:

(X1, X2, X3) T2(X1, X2, X3) p(X1, X2, X3)
(0, 0, 0) 0 (1− θ)2

(0, 0, 1) 0 θ(1− θ)
(0, 1, 0) 0 θ(1− θ)
(1, 0, 0) 1 θ(1− θ)2

(0, 1, 1) 0 θ2

(1, 0, 1) 1 θ(1− θ)
(1, 1, 0) 1 θ(1− θ)
(1, 1, 1) 1 θ2

• Note that the likelihood itself induces a partition:

(X1, X2, X3) L(θ;X1, X2, X3)
(0, 0, 0) (1− θ)3

(0, 0, 1) θ(1− θ)2

(0, 1, 0) θ(1− θ)2

(1, 0, 0) θ(1− θ)2

(0, 1, 1) θ2(1− θ)
(1, 0, 1) θ2(1− θ)
(1, 1, 0) θ2(1− θ)
(1, 1, 1) θ3

This so-called likelihood partition provides a good test for whether or not statistics are sufficient. If
the likelihood partition has divisions (denoted by horizontal lines in the tables above) if is not sufficient.
Otherwise, it is sufficient:

(X1, X2, X3) T (X1, X2, X3) T2(X1, X2, X3) L(θ;X1, X2, X3)
(0, 0, 0) 0 0 (1− θ)3

(0, 0, 1) 1 0 θ(1− θ)2

(0, 1, 0) 1 0 θ(1− θ)2

(1, 0, 0) 1 1 θ(1− θ)2

(0, 1, 1) 2 0 θ2(1− θ)
(1, 0, 1) 2 1 θ2(1− θ)
(1, 1, 0) 2 1 θ2(1− θ)
(1, 1, 1) 3 1 θ3

Note that the partition induced by T2 “broke” a horizontal line; as such, it is not sufficient.

• A minimal sufficient partition is the coarsest sufficient partition. It can be shown that the likelihood
always generates the coarsest sufficient partition; hence, we adopt the following “test:” a statistic is
minimal sufficient (for θ) if the partition it induces is the same as the likelihood partition.

• In our example above, T1 generates the same partition as the likelihood and is therefore minimal
sufficient.

Rule-of-Thumb: If the likelihood partition creates divisions where the partition induced by T does
not, then T is not sufficient; otherwise it is sufficient. If it T sufficient, and partitions the sample
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space in the same way as the likelihood, then it is minimal sufficient.

5
Two-Sample Tests

• Big Idea: given two samples {Xi}ni=1 and {Yi}mi=1, we wish to determine whether or not these samples
came from the same distribution.

– This question, however, is too broad. Instead, we will compare sample means. That is, we test
the hypothesis that µX = µY , where µX and µY denote the populations means of the distributions
from which X and Y were sampled, respectively.

• Key Assumption: we will assume that the two samples come from independent normal distri-
butions. That is,

X ∼ N (µX , σ
2
X); Y ∼ N (µY , σ

2
Y )

In this framework, our null hypothesis is

H0 : µX = µY

– There are several choices for the alternative hypothesis: for example, µX 6= µY (a two-sided
alternative), or various one-sided alternatives (e.g. µX > µY , or µX < µY ).

• The statistic we use will always be of the form

T =
(X̄ − Ȳ )− (µX − µY )

σ̂
√

1
n + 1

m

where σ̂ denotes an estimate of standard deviation. There are two possible estimators we can use to
estimate σ, depending on whether or not we assume σX = σY .

– If we assume σX = σY := σ (that is, if we assume both X and Y have the same population
standard deviation), use

σ̂2 =
(n− 1)s2

X + (m− 1)s2
Y

m+ n− 2

(called the pooled sample variance). With this estimate, T ∼ tm+n−2.

– If we assume σX 6= σY (that is, if we assume X and Y have the different population standard
deviations), use

σ̂2 =
s2
X

n
+
s2
Y

m

(where s2
X and s2

Y denote the sample standard deviations from {Xi}ni=1 and {Yi}ni=1, respectively).
With this estimate, the distribution of T is unknown, however it is (asymptotically) very
close to a t distribution with degrees of freedom

df = round


[(

s2X
n

)
+
(
s2Y
m

)]2
(

s2
X
n

)2

n−1 +

(
s2
Y
m

)2

m−1


• Everything above outlines a set of parametric tests; we can also use a very popular nonparametric test,

known as the Mann-Whitney Test (also known as the Wilcoxin Rank-Sum Test).

– The main idea behind the Mann-Whitney test is as follows. Suppose we have two samples,
{Xi}ni=1 and {Yi}mi=1, and we wish to ascertain whether or not these samples came from the same
distribution. We therefore set this to be our null: H0 asserts that the samples were drawn from
the same population.
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– We now assume the null hypothesis (as we do for all statistical testing). Since we believe both
samples to have come from the same population, let’s pool our sample observations together to
form a set of N := n+m observations.

If we see that the majority of observations from X are smaller (or larger) than those from Y , we
have reason to believe that there is some strong underlying difference between X and Y , and we
would reject the null.

On the other hand, if we see that all values from X and Y are mixed together well, with no
noticeable differences, we would have no reason to reject the null.

– To actually carry out this comparison, we assign ranks to the N pooled observations, and examine
the possible distribution of ranks. This forms the basis of the Mann-Whitney Test.

• Algorithm: Mann-Whitney Test

(1) Pool the N := n+m samples together, and assign N ranks to these pooled observations. (If there
are ties, assign each the average of the tied ranks).

(2) Let TY denote the sum of a random sample of size m from these ranks. Find the distribution of
TY :

– If the sample size is small, enumerate all possible permutations by hand.

– If the sample size is large, you can approximate the distribution of TY with a normal distri-
bution.

(3) Return to the original configuration of your data, and determine the “sample rank-sum” (that is,
the sum of ranks in the actual sample {Yi}mi=1) and place this on the distribution of TY .

(4) Form a rejection region based on a level of significance α and your statistic from step (3) above.

6
Analysis of Variance (ANOVA)

• In a one-way layout, we consider I groups, each with some number of measurements on one particular
factor, and attempt to explain the difference in means across groups. (Compare this with a two-way
layout, in which two factors are measured within each group).

– Example of a one-way layout: Consider scores on an exam, grouped by year (i.e. Freshman,
Sophomore, Junior, Senior), and suppose we want to determine whether or not there is a significant
difference in the average test score for the different years.

– Two-way layouts are generally not covered in Stat 135.

• ANOVA (Analysis of Variance) is a type of Hypothesis Testing; the null and alternate hypotheses are
as follows: [

H0 : Differences in means are due purely to chance
H1 : Differences in means are due to some confounding variable

• The Model: Letting Yij denote the jth observation of the ith group, and letting αi denote the
differential effect of the ith treatment, we can write our model as

Yij = µ+ αi + εij

where we impose the condition
∑I
i=1 αi = 0. Key Assumption: εij

i.i.d.∼ N (0, σ2). [This assumption
can be relaxed in a nonparametric setting; see the notes on the Kruskal-Wallis Test below].



Page 8 of 18

• SST = SSW + SSB. That is: Sum of Squares, Total is equal to the Sum of Squares Within [each group]
plus the Sum of Squares Between [groups]. For now, assume each group has the same number of
observations (which we call J); then, mathematically, we write

I∑
i=1

J∑
j=1

(Yij − Ȳ )2

︸ ︷︷ ︸
SST

=

I∑
i=1

J∑
j=1

(Yij − Ȳi·)2

︸ ︷︷ ︸
SSW

+ J

I∑
i=1

(Ȳi· − Ȳ··)2

︸ ︷︷ ︸
SSB

(SST Decomposition)

where

Ȳi· :=
1

J

J∑
j=1

Yij ; Ȳ·· :=
1

IJ

I∑
i=1

J∑
j=1

Yij

• Another way to phrase the null hypothesis, in terms of the αi’s, is

H0 : α1 = · · · = αI = 0

To test this hypothesis, we use

F =
SSB/(I − 1)

SSW/[I(J − 1)]

which, under the null, follows an FI−1, I(J−1). We reject H0 for large values of F .

• A Key Problem: [This appeared as Problem 1 on the Midterm Review Problems sheet, curated
by SUSA.] Suppose H0 is true, and suppose we perform n hypothesis tests on H0, each at an α level
of significance. Then, on average, we expect to reject nα hypotheses even though they are all true.

– To mitigate this, we use the Bonferroni Correction, which states that each hypothesis test
should be conducted at an α/n level of significance. This ensures the overall significance level is
less than or equal to α.

– Often times, when performing ANOVA, we adopt a Bonferroni Correction, dividing α by the
number of pairwise comparisons possible. Thus, if there are J groups, we divide by

(
J
2

)
.

– Alternate Formulation of ANOVA: Construct confidence intervals for the true mean of ob-
servations within each group, using a Bonferroni Correction on the level of significance α. If all
J of these confidence intervals overlap, fail to reject the null. Otherwise; reject the null (i.e.,
conclude that at least one group has a significantly different mean than the others).

• CRUCIAL NUANCE: The alternative hypothesis in ANOVA is NOT: “all groups have different
means.” Rather, the alternative is the logical negation of the statement “all groups have the same
mean,” which is

HA : At least one group has a significantly different mean than the others

• Unequal Group Sizes: Suppose that we still have I groups, but that each group does not have
the same number of observations. In this case, let Ji denote the number of observations in group
i ∈ {1, . . . , I}; the SST Decomposition can be modified as

I∑
i=1

J∑
j=1

(Yij − Ȳ )2

︸ ︷︷ ︸
SST

=

I∑
i=1

Ji∑
j=1

(Yij − Ȳi·)2

︸ ︷︷ ︸
SSW

+

I∑
i=1

Ji(Ȳi· − Ȳ··)2

︸ ︷︷ ︸
SSB

(SST Decomposition v2)

where

Ȳi· :=
1

Ji

Ji∑
j=1

Yij ; Ȳ·· :=
1

I

I∑
i=1

Ȳi· =
1

I

I∑
i=1

1

Ji

Ji∑
j=1

Yij
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• Alternative Formulation of SSW: Let s2
i denote the sample variance of observations in group I.

Then

SSW =

I∑
i=1

(Ji − 1)s2
i

If we again assume the sample sizes across groups are the same, and equal to J , then an unbiased
estimate of σ2 (the true population variance of the errors) is given by

s2
p :=

SSW

I(J − 1)

• What Formula to use When? We’ve seen two forms of SSW; one involving Yij ’s, and the other
involving s2

i ’s. The reason we might chose to use the second formula over the first is if we don’t have
access to the original data! In some problems, you will be given only sample sizes and sample variances,
and will not be given the original data. Clearly, in this case, you can’t use the first form of SSW!

• If the assumption of Gaussian errors is not met, a nonparametric analog of ANOVA can be used. [
Independence across observations is still assumed.] One such test is the Kruskal-Wallis Test, which
can be thought of as a generalization of the Mann-Whitney test. Unsurprisingly, it utilizes ranks.

• Algorithm: Kruskal-Wallis Test. H0 : Observations within each group have the same distribution.

(1) Combine all observations Yij into a single set. Define

Rij = Rank of Yij in the combines sample

Ri· = Average of ranks of observations in group I =
1

Ji

Ji∑
i=1

Rij

R·· = Global average of Ranks =
1

N

I∑
i=1

Ji∑
j=1

Rij =
1

N
· N(N + 1)

2
=
N + 1

2

where N :=
∑
Ji denotes the total number of observations.

(2) Compute SSB, where

SSB =

I∑
i=1

Ji(Ri· −R··)2

(this can be thought of as a measure of how spread out the ranks are from the average rank).
Under H0, SSB should be small.

(3) Compute the sample variance of the Rij ’s, using

Var(R) =
1

N − 1

N∑
i=1

(
i− N + 1

2

)2

= · · · = N(N + 1)

12

(4) Finally, compute the Kruskal-Wallis Test Statistic, denoted K, is defined to be

K :=
SSB

N(N + 1)/12

Under the null, K ∼ χ2
I−1. Thus, form a rejection region using the quantiles of the χ2

I−1 distri-
bution, and complete the hypothesis test accordingly.
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7
χ2 Theory and Tests

• χ2 Goodness of Fit Test: Could the data we observed plausibly have come from some distribution
(let’s call it F)? To answer this, we use a χ2 Goodness of Fit test. The null hypothesis is:

H0 : The xi’s come from the distribution F

– Let {xi}mi=1 denote the sample values we observed. Let x̂i denote the value of xi that is predicted
by the distribution F . Then, the Pearson χ2 statistic takes the form

X2 :=

m∑
i=1

(xi − x̂i)2

x̂i

and, under the null with appropriately large sample size m, follows a χ2 distribution with degrees
of freedom equal to

df = m− 1−# parameters

Construct a rejection region according to the appropriate χ2 distribution, and complete the hy-
pothesis test.

– As a quick example: could the following observations have come from a Poisson distribution?

1 1 0 0 2

First arrange the data in the following manner:

# of Arrivals 0 1 2
Count 2 2 1

Now, we fit a Poisson distribution to our data: we estimate the rate of this Poisson distirubtion
using the MLE of λ, λ̂ML = sample mean. Therefore, our best guess for the Poisson distribution
that fits this data is a Pois(0.8) distribution, and our null hypothesis is

H0 : The xi’s come from a Pois(0.8) distribution

We can now compute expected counts. That is, letting X ∼ Pois(0.8), the expected number of
k’s (where k ∈ {0, 1, 2}) is

n · P(X = k) = 5 · ·e−0.8 (0.8)k

k!

We thus fill in our table accordingly:

# of Arrivals 0 1 2
Observed 2 2 1
Expected 2.246645 1.797316 0.7189263

and the Pearson χ2 statistic is

X2 =
(2− 2.246645)2

2.246645
+

(2− 1.797316)2

1.797316
+

(1− 0.7189263)2

0.7189263
≈ 0.1598

Under H0, X2 will follow a χ2 distribution with degrees of freedom 5 − 1 − 1 = 3 (since we
estimated one parameter, namely, λ): thus, the p−value of our test is 0.0162. Therefore, there is
sufficient evidence to reject the null; we have reason to believe the data was not sampled from a
Poisson distribution. [Of course, with such a small sample size we should be wary of any results;
however, the main point of this was just to lay out the procedure for conducting a Goodness of
Fit test.]



Page 11 of 18

• χ2 Test of Homogeneity: Given J different multinomial distributions, each with I observations, can
we claim a statistical difference between these distributions? To answer this question, we use a χ2 Test
of Homogeneity. Letting πij denote the probability of the ith observation in the jth multinomial, we
can phrase the null hypothesis as:

H0 : πi1 = πi2 = · · · = πiJ , i = 1, . . . , I

– In a sense, we will perform a Goodness of Fit Test, testing whether the distribution under the
null is a good fit for our data. Specifically, the distribution under the null will be a Multinomial
distribution where each of the J multinomials have the same probability πi for the ith observation.

– Let ni· denote the number of responses in the ith category, and let n·· denote the total number
of responses. Then, under the null, each of π1, π2, . . . , πI has an MLE equal to

π̂i =
ni·
n··
, i = 1, . . . , I

The expected count for the (i, j)th cell is

Eij = n·j × π̂i =
n·j
ni·n··

and, letting nij denote the (i, j)th observation, the Pearson χ2 statistic takes the form

X2 =

I∑
i=1

J∑
j=1

(Observedij − Expectedij)
2

Expectedij
=

I∑
i=1

J∑
j=1

(
nij − n·j

ni·n··

)2

n·j
ni·n··

When the sample size is very large, X2 is approximately distributed as a χ2 distribution with
degrees of freedom

df = J(I − 1)− (I − 1) = (I − 1)(J − 1)

• χ2 Test of Independence: Given J different multinomial distributions, each with I observations,
can we conclude each of the J multinomial distributions to be independent? To answer this question,
we use a χ2 Test of Independence. Let πij denote the probability associated with the (i, j)th cell, and
define the following marginal probabilities as follows:

πi· :=

J∑
j=1

πij = marginal probability that an observation will fall in the ithrow

π·j :=

I∑
i=1

πij = marginal probability that an observation will fall in the jthcolumn

Our null hypothesis, namely that rows and columns are independent of each other, can then be phrased
as

H0 : πij = πi· × π·j , i = 1, . . . , I; j = 1, . . . , J

– Under H0, the MLE π̂ij of πij is

π̂ij = ̂πi· × π·j = π̂i· × π̂·j =
ni·
n
× n·j

n
=
ni·n·j
n2

where n denotes the total number of observations, ni· denotes the number of observations in row
i, and n·j denotes the number of observations in column j. The expected count for the (i, j)thcell
is

Eij = n× π̂ij = n× ni·n·j
n2

=
ni·n·j
n
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and so, under H0, the Pearson χ2 statistic takes the form

X2 =

I∑
i=1

J∑
j=1

(Observedij − Expectedij)
2

Expectedij
=

I∑
i=1

J∑
j=1

(
nij − n·j

ni·n

)2

n·j
ni·n

When the sample size is very large, X2 is approximately distributed as a χ2 distribution with
degrees of freedom

df = IJ︸︷︷︸
# of observations

−1− (I − 1)− (J − 1)︸ ︷︷ ︸
# of parameters estimated

= (I − 1)(J − 1)

• What’s the Difference between Tests of Homogeneity and Tests of Independence? You’ll
note that the final math (as in, the test statistic and its distribution under the null) is the same for
both Tests of Homogeneity and Tests of Independence. So, what’s the difference between the two?

– In a χ2 test of homogeneity, we have two or more populations but only one categorial variable.
In a χ2 test of independence, however, we have only one population but two categorical variables.
As such, the key difference between the two tests lies in the setup of the problem.

– Scenario 1: I seek out 50 out-of state students and 100 in-state students at a University, note
their favorite color and note whether they are an out-of-state student or not. Subsequently, I
want to know if Favorite Color and Out-Of-State-ness are related.

Here we have two populations (namely, Out-of-State and In-State) and only one categorical vari-
able (namely, Favorite Color); as such, we should perform a test of homogeneity.

– Scenario 2: I sample 150 students at a University, note their favorite color and note whether
they are an out-of-state student or not; it turns out that 50 people in this sample are out-of-state,
and the remaining 100 are in-state. Subsequently, I want to know if Favorite Color and Out-Of-
State-ness are related.

Here we have only one population (namely 150 students) and two categorical variables (in/out-
of-state-ness and Favorite Color); as such, we should perform a test of independence.

• What’s the Difference between χ2 Tests and ANOVA? On the surface, it seems as though both
ANOVA and χ2 tests are designed to answer the question “do relationships exist across these J groups
I’ve observed?” The key difference lies in the type of data being observed.

– In ANOVA, we assume continuous data (e.g. levels of drug in the bloodstream, weight measure-
ments, etc.)

– In χ2 Tests of Homogeneity and Tests of Independence, we assume discrete data (counts of some
sort). [Additionally, since the data is discrete, we definitely can’t assume normally distributed
data...]

8
Regression

• Warm-Up: Line-Fitting using SSE Consider the problem of fitting a line to a series of n points on
the (x, y) plane. More specifically: given datapoints {(xi, yi)}ni=1, we associate with each point (xi, yi)
another point (xi, ŷi) such that all the {(xi, ŷi)}ni=1 lie along a line:
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x

y

(x4, y4)

(x3, y3)

(x2, y2)

(x1, y1)
•

(x4, ŷ4)

•
(x3, ŷ3)•

(x2, ŷ2)

•
(x1, ŷ1)

We need some way of assessing how “good” our line of fit is: ideally, we want our line to be as “close”
to the datapoints as possible.

Define the Sum of Squared Errors, or SSE as follows: given a series of predictions {ŷi}ni=1 for values
{yi}ni=1, we define the SSE to be

SSE :=

n∑
i=1

(yi − ŷi)2

Graphically, this corresponds to the sum of squared-differences between the predicted values and the
true values. If our fit is to be considered “good,” we want SSE to be as low as possible.

Mathematically, this means we want to minimize SSE. However, what variable should we minimize
over? Recall that our ŷi values all fall along a line; as such, we may express our ŷi as

ŷi = a+ bxi

Hence, we can actually minimize the SSE over a and b, the slope and intercept of our fitted line.

SSE =

n∑
i=1

[yi − (a+ bxi)]
2

∂

∂a
[SSE] = −2

n∑
i=1

(yi − a− bxi)
!
= 0

∂

∂b
[SSE] = −2

n∑
i=1

xi(yi − a− bxi)
!
= 0

Solving the resulting system of equations for a and b yield the desired result.

• Tying Together SSE Together and Regression. Suppose, now, we have a set of n points
{(xi, yi)}ni=1 where X and Y are related variables: for example, X could be “height” and Y could
be “weight.” We call Y the response variable, and we call X the predictor variable.

– Assumption: We will assume that our response variable can be modeled as follows:

yi = β0 + β1xi + εi

That is, we assume that our response variable and predictor variable are linearly related, plus or
minus some random noise εi. Because this noise is random, its exact value at any instance i is
unknown; the best we can try to do is fit the “de-noised” line β0 + β1xi to our data.

– Now that we have reduced our problem into that of line-fitting, we can use the results from the
introductory warm-up above. Set

S(β0, β1) := SSE :=

n∑
i=1

(yi − β0 − β1xi)
2
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and minimize S(β0, β1) over β0 and β1, separately. Taking appropriate derivatives and setting
equal to zero, we obtain the minimizing quantities

β̂1 =

n∑
i=1

(xi − x̄)(yi − ȳ)

n∑
i=1

(xi − x̄)2

; β̂0 = ȳ − β̂1x̄

Another useful formulation of β̂1 is

β̂1 = r ·
(
sx
sy

)
where sx is the sample variance of the predictor values, sy is the sample variance of response
variables, and r is the sample correlation between X and Y .

• Multiple Regression: Suppose instead of having only one predictor variable, we had p predictors,
so that our data took the form {(xi1, xi2, . . . , xip, yi)}ni=1.

– We will therefore use the model

yi = β0 + β1xi1 + · · ·+ βpxip + εi

This is more compactly expressed in matrix/vector form. Define the following quantities:

~y =

y1

...
yn

 ; ~β =


β0

β1

...
βp

 ; ~ε =

ε1

...
εn

 ; X =


1 x11 x12 . . . x1p

1 x21 x22 . . . x2p

...
...

. . .
...

1 xn1 xn2 . . . xnp


In other words, the (i, j)thelement of X is the ithobservation of the jthpredictor variable. Then,
our model can be neatly summarized as

~y = X~β + ~ε

– Our goal, therefore, is to fit a hyperplane Xβ̂ to our data. The notion of SSE extends to multiple
dimensions:

SSE :=

n∑
i=1

(yi − β0 − β1xi1 − β2xi2 − · · · − βpxip)2; i = 1, 2, . . . , n

We could differentiate this p + 1 times, to p + 1 equations to estimate the p + 1 unknowns
β0, β1, . . . , βp; however, it will be much more efficient to write the SSE in vector notation as well:

S(~β) := SSE :=
∥∥∥~y −X~β

∥∥∥2

= (~y −X~β)T(~y −X~β)

where ‖ · ‖2 denotes the squared-Euclidean norm. Expanding our expression for S(~β), differenti-

ating (with respect to a vector!!!) and setting equal to ~0 yields the following equation which β̂
must satisfy:

(XTX)β̂ = XT~y (Normal Eqns.)

These are known as the Normal Equations. (Note that we use equations, plural, because this
is actually a system of p+ 1 equations in p+ 1 unknowns!) Assuming XTX is invertible, we find

β̂ = (XTX)−1XT~y (OLS Estimate)

which is known as the Ordinary Least Squares Estimate of ~β (or OLS estimate, for short).
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– Prediction: Suppose that we now obtain a new set of observations on the p predictor variables:
(xn+1,1, xn+1,2, . . . , xn+1,p). Set

~xn+1 =


1

xn+1,1

xn+1,2

...
xn+1,p


Then, our best estimate for the true response variable yn+1 associated with these new observations
is

ŷn+1 = ~xT
n+1β̂

• We may construct a (1−α)× 100% confidence interval for the mean Y−value given an an observation
~x0 using

~x0
Tβ̂ ± t(α/2)

n−p−1 · σ̂ ·
√
~x0

T(XTX)−1 ~x0

If instead we seek to construct an interval for an individual observation of y, we instead construct a
prediction interval using

~x0
Tβ̂ ± t(α/2)

n−p−1 · σ̂ ·
√

1 + ~x0
T(XTX)−1 ~x0

where p denotes the number of explanatory variables, and t
(α/2)
n−p−1 denotes the α/2thquantile of the

tn−p−1 distribution. Typically, to estimate σ we use

σ̂ =
RSS

n− (p+ 1)

• Should I Include an Intercept or Not? Note that the general model above assumes the presence
of an intercept β0. In certain cases, however, it makes sense to omit the intercept; usually this will be
obvious given the context of a problem. That is, if we have an observed x−value of 0, it will typically
be obvious whether our response value should be 0 (in which case we omit the intercept from our
model) or not (in which case we include the intercept from our model).

9
Bayesian Statistics

• In the Bayesian framework, population parameters are considered to be random variables, rather than
fixed deterministic quantities (as is the case in the frequentist framework).

– This enables us to update the prior; intuitively, this refers to the idea of updating our viewpoint
of the world every time new information is given to us.

• An illustrative example may be useful: consider a two-sided coin that lands either heads or tails. In a
Bayesian framework, we assume that the probability of the coin landing heads is a random variable Θ.
The distribution of Θ is called the prior distribution, and is set before conducting any experiments.

– Picking a prior distribution isn’t always easy, though often times there are physical constraints that
aid us in our choice of a prior. For example, in the coin-tossing scenario, Θ must have a support
of [0, 1]. As such, a natural choice of prior might be to set Θ ∼ Unif[0, 1], or Θ ∼ Beta(α, β)
where α and β are real numbers (called hyperparameters).

– Sometimes, priors are set in a certain way because they simplify math; see the notes on conjugacy
below.
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• At the heart of Bayesian Statistics is a form of Bayes’ Rule, which states

fΘ|X(θ | x) =
fX|Θ(x | θ)× fΘ(θ)

fX(x)
=

fX|Θ(x | θ)× fΘ(θ)
ş

Θ
fX|Θ(x | θ̃)× fΘ(θ̃) dθ̃

A key to Bayesian Statistics is becoming comfortable with ignoring normalizing constants. For
example, in the ratio above, the marginal fX(x) doesn’t give us any new information. As such, we
generally consider the following representation:

fΘ|X(θ | x)︸ ︷︷ ︸
Posterior

∝ fX|Θ(x | θ)︸ ︷︷ ︸
Likelihood

× fΘ(θ)︸ ︷︷ ︸
Prior

• A prior and a posterior are said to be in conjugacy (or, stated differently, they are said to form a
conjugate pair) if both the prior and posterior belong to the same family of distributions.

– Beta-Binomial Conjugacy: If we choose a beta prior and a binomial likelihood, then the
posterior will also follow a beta distribution.

– If you have an idea of what the posterior distribution might be, it may make sense to set the prior
to be a conjugate pair with the posterior (so that the algebra simplifies considerably).

• The Maximum A Posteriori Estimator (or MAP estimator) of a parameter Θ can be loosely
thought of as the Bayesian analog of MLE:

θ̂MAP := argmax
θ

{
fΘ|X(θ | x)

}
In other words, it is the maximum value (i.e. mode) of the posterior distribution, and represents a
notion of the “most probable” value of Θ.

• It will be instructive to complete an example. Set Θ ∼ Unif[0, 1] and (X | Θ = θ) ∼ Bin(n, θ). Then,
in this example (assuming a sample {x} of size 1),

Prior Density: fΘ(θ) = 1{θ ∈ [0, 1]}

Likelihood Density: P(X = x | Θ = θ) =

(
n

x

)
θx(1− θ)n−x

Then, the posterior density is obtained by

fΘ|X(θ | x) ∝
(
n

x

)
θx(1− θ)n−x · 1{θ ∈ [0, 1]} ∝ θx(1− θ)n−x · 1{θ ∈ [0, 1]}

Notice that we dropped the initial binomial factor; this is because it doesn’t give us any
information about θ, and will be absorbed by the normalizing constant appearing in the denominator
of Bayes’ Rule. This shows that

(Θ | X = x) ∼ Beta(x+ 1, n+ 1− x)

To find the MAP estimate of Θ we differentiate the likelihood, with respect to θ:

d

dθ
fΘ|X(θ | x) ∝ xθx−1(1− θ)n−x − θx(n− x)(1− θ)n−x−1

Set equal to 0 to see
xθ̂x−1(1− θ̂)n−x = θ̂x(n− x)(1− θ̂)n−x−1

or, equivalently,
x

θ̂
=
n− x
1− θ̂

which implies that θ̂MAP = x/n .
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10
Miscellaneous Concepts

Note: These are concepts that are not explicitly taught in Stat 135, however they are crucial for all 150
series classes. As such, we believe it will be beneficial for you to read this section.

10.1 Convergence: A Deeper Dive

• First recall the two types of convergence, and their definitions:

– A sequence {Xi}∞i=1 converges in probability to a random variable X if, for every ε > 0, we have

lim
n→∞

P (|Xn −X| < ε) = −

In other words, convergence in probability means that, as n gets very large, we become more
and more certain that Xn and X are really the same thing. We typically notate convergence in
probability by:

– A sequence {Xi}∞i=1 converges in distribution to a random variable X if

lim
n→∞

FXn
(x) = FX(x)

where FXn
(·) denotes the c.d.f. of Xn, and FX(·) denotes the c.d.f. of X. We typically notate

convergence in probability by:

Xn
d→ X

• Convergence in probability is a stronger condition than convergence in distribution; in fact,

(Xn
p→ X) =⇒ (Xn

d→ X)

The converse is not necessarily true.

• Central Limit Theorem, Revisited: The CLT is actually a statement about convergence in distri-
bution! Here is a more formal phrasing of its statement: Let {Xi}∞i=1 denote a sequence of independent
random variables with mean µ and variance σ2. Define

Sn :=

n∑
i=1

Xi

Then, (
Sn − nµ
σ
√
n

)
d→ N (0, 1)

Phrased slightly differently,

lim
n→∞

P

(
Sn − nµ
σ
√
n
≤ x

)
= Φ(x) :=

ż x

−∞

1√
2π
e−

1
2 t

2

dt

• Recall, from Stat 134, we say that the normal distribution can “approximate” the binomial distribution.
In fact, we can phrase this more rigorously using convergence concepts: If Xn ∼ Bin(n, p) and p̂n :=
Xn/n, we have

Xn − np√
np(1− p)

d→ N (0, 1);
p̂n − p√
p(1− p)/n

d→ N (0, 1)
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10.2 Establishing Consistency

When trying to prove that an estimator is consistent, the following theorem may be useful:

Establishing Consistency: Let θ̂n be an unbiased estimator of θ. If Var(θ̂n)→ 0 as n→∞, then θ̂n
is a consistent estimator of θ.

Proof: Since θ̂n is an unbiased estimator of θ, we have that E(θn) = θ. Let σθ̂n denote the standard deviation

of θ̂n (for a fixed sample size n); then, for k > 0, Chebyshev’s Inequality tells us that

0 ≤ P
(∣∣∣θ̂n − θ∣∣∣ ≥ kσθ̂n) ≤ 1

k2
(1)

Fix an arbitrary ε > 0; since equation 1 holds for any k > 0, it must hold for k = ε/θ̂n, which yields

0 ≤ P

(∣∣∣θ̂n − θ∣∣∣ ≥ ε

��σθ̂n
·��σθ̂n

)
≤
σ2
θ̂n

ε2

Recognizing σ2
θ̂n

= Var(θ̂n), and simplifying terms, we obtain

0 ≤ P
(∣∣∣θ̂n − θ∣∣∣ ≥ ε) ≤ Var(θ̂n)

ε2

Now, take the limit as n→∞; if Var(θ̂n)→ 0 as n→∞, then the squeeze theorem (from mathematics)
tells us that

P
(∣∣∣θ̂n − θ∣∣∣ ≥ ε)→ 0

which is precisely the definition of the statement that θ̂n is a consistent estimator of θ. �

11
Additional Resources

All of Statistics, by Larry J. Wasserman (Available for free through SpringerLink)

Though concise, this book provides a good overview of many concepts of Probability and Statis-
tics. Specifically, chapters 5, 6, 8, 9, 10, and 11 all have sections that are directly applicable to
Stat 135. We highly recommend this text as a refresher of concepts, as well as a resource for
future coursework.

Mathematical Statistics with Applications, by Wackerly, Mendenhall, and Scheafer

This text is quite similar to Rice in may ways, but with a slightly different organization of topics.
Additionally, this text contains a more rigorous discussion of convergence topics as well as a more
rigorous introduction to Bayesian Statistics. Several universities have adopted this as a textbook
of choice; chapters 7 - 16 contain material directly applicable to Stat 135.

For those with a slightly higher mathematical curiosity:
Statistical inference, by Casella and Berger

This is a popular text among graduate-level mathematical statistics classes, though many sections
are quite well-written and comprehensible by a motivated undergraduate student. If ever you
find yourself curious on how to dive deeper into a particular subject, we recommend referencing
this textbook.
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