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1
Inferential Statistics

• A population is too large to be observed in its entirety; as such, we must use samples to explore
properties of the population.

– The gold-standard of sampling is a Simple Random Sample, in which observations are taken
independently of each other, from identical distributions.

– Other sampling techniques include stratified sampling, and cluster sampling.

• Population parameters are deterministic quantities pertaining to the population; their exact values
can never be determined exactly, and must be estimated using estimators (which are functions of
data).

– Bias measures “how far off” an estimator is from the parameter it is estimating. Mathematically,
if θ̂ is an estimator for θ, we write Bias(θ̂, θ) = E(θ̂)− θ.

• Confidence Intervals provide a way of quantifying uncertainty, specifically with respect to estima-
tions of population parameters.

• The Central Limit Theorem provides information on the asymptotic behavior of the sample mean.

• Samples are generally taken without replacement, and observations are therefore (technically) depen-
dent. However, as the sample size increases, the dependence between observations tends towards 0.

– The finite population correction factor relates samples drawn without replacement to those
drawn with replacement. When the sample size is very large, the finite population correction
factor is approximately 1.

2
Parameter Estimation

• Two popular estimators of population parameters are the Method of Moments (MoM) estimator
and the Maximum Likelihood Estimator (MLE).

– MLE’s satisfy the equivariance property (sometimes called the invariance property), which

states that f̂(θ)ML = f(θ̂ML) (provided f satisfies certain mathematical properties).

– The variance of the MoM estimator can be approximated using the method of propagation of
errors (also known as the δ-method).

– The asymptotic variance of the MLE is [In(θ)]−1, where In(θ) is the Fisher information of the
sample.

• The Cramér-Rao Lower Bound (CRLB) provides a lower bound on the variance of any unbiased
estimator of a population parameter (under certain regularity conditions).

– Estimators whose variance are exactly equal to the CRLB are said to be efficient.

• Sufficient Statistics are functions (of data) that contain all the information about a parameter θ,
given a sample. Mathematically, they induce a partition of the sample space that is finer than (or as
fine as) the likelihood function. A Minimal Sufficient Statistic is a sufficient statistic that partitions
the sample space in the coarsest manner.

– Sufficient statistics are not unique, whereas minimally sufficient statistics are.1

1Technically, if T and U are both minimally sufficient statistics then there exists a one-to-one function φ such that T = φ(U),
so it would be more mathematically rigorous to say T ∼ U rather than T = U .
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– Sufficient statistics are typically found using the Factorization Theorem.

• An estimator θ̂n of θ is said to converge in probability to θ if P(|θ̂n − θ| ≥ ε) → 0 as n → ∞.

Convergence in probability is notated as: θ̂n
p→ θ.

– Compare this with convergence in distribution: a sequence {Xi}ni=1 is said to converge in
distribution to a random variable X if

lim
n→∞

FXn(x) = FX(x)

Convergence in distribution is weaker than convergence in probability.

• An estimator θ̂ is said to be a consistent estimator of a parameter θ if θ̂
p→ θ.

– As an example: under certain regularity conditions, the MLE is consistent.

• Given an estimator θ̂ of a parameter θ, a “better” (i.e. lower-variance) estimator can always be obtained
by conditioning on a sufficient statistic. This is known as Rao-Blackwellization.

• The bootstrap provides another method for parameter estimation.

– In the nonparametric bootstrap, no assumptions are made about the underlying distribution.
The sampling distribution is approximated by repeatedly sampling (with replacement) from the
original sample, and the remainder of inference is conducted as before.

– In the parametric bootstrap, assumptions are made about the underlying distribution. The
parameters of said distribution are computed from the original sample, and the sampling distri-
bution is approximated by repeatedly generating samples from the assumed distribution (with
the estimated parameters plugged in).

3
Hypothesis Testing

• The null hypothesis is chosen to represent the status quo; the alternative hypothesis provides a
theory contrary to the null hypothesis. The goal of hypothesis testing is to determine which of the
two hypotheses better describes the current state.

• There are several terms and notations associated with hypothesis testing:

– Level of Significance (α): P(reject H0 | H0 is true)

∗ The event {(reject H0 | H0 is true} is known as a Type I Error

– Power [of a test] (1− β): P(fail to reject H0 | H0 is false)

∗ The event {(fail to reject H0 | H0 is false} is known as a Type II Error
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• The Neyman-Pearson Lemma states that the Generalized Likelihood Test is uniformly most
powerful.

• Hypothesis testing and confidence intervals are equivalent.
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• p−values are always constructed “under the null;” that is, they are computed after assuming the null
hypothesis is true.

• The rejection region is the set of values of a test statistic that lead to rejection of the null: R =
{xi : test at xi rejects H0}.

4
Partitioning the Sample Space

• A partition can be thought of a grouping structure that groups like elements together. For example,
consider the likelihood function of our scenario above:

p(θ) =

3∏
i=1

p(xi; θ) =

3∏
i=1

θxi(1− θ)1−xi = θ
∑3
i=1Xi(1− θ)3−

∑3
i=1Xi

• There are only 8 possible configurations of our data (X1, X2, X3); let us enumerate them all:

{(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)}

The set of all possible configurations of data is called the sample space. So, the set above would be
the sample space of our example.

• Each of these 8 possibilities corresponds to a different value of T :

(X1, X2, X3) (0, 0, 0) (0, 0, 1) (0, 1, 0) (1, 0, 0) (0, 1, 1) (1, 0, 1) (1, 1, 0) (1, 1, 1)
T (X1, X2, X3) 0 1 1 1 2 2 2 3

• Here, we can see how the statistic T induces a partition: it is natural to group all T = 0 terms together,
all T = 1 terms together, and all T = 2 terms together.

• More generally, a partition is a collection of sets {B1, . . . , Bn}. A partition is defined to be sufficient if
f(xi | X1, . . . , Xn ∈ B) does not depend on θ. By “the partition induced by T”, we mean the partition
consisting of elements {t : T (X1, X2, X3) = t} for all possible values of t. Therefore, for a statistic to
be sufficient, the partition it induces must be sufficient.

• Algorithmically, to determine whether or not a partition is sufficient, we compare it to the partition
induced by the conditional probability P(X1, X2, X3 = (x1, x2, x3) | T ). For example,

p[(0, 0, 1) | T = 1] =
P(X1 = 0, X2 = 0, X3 = 0 | T = 1)

P(T = 1)
=

θ(1− θ)2

θ(1− θ)2 + θ(1− θ)2 + θ(1− θ)2
=

1

3

Iterating through the 8 possibilities, we obtain the following table:

(X1, X2, X3) T (X1, X2, X3) p(X1, X2, X3)

(0, 0, 0) 0 (1−θ)3
(1−θ)3 = 1

(0, 0, 1) 1 1/3
(0, 1, 0) 1 1/3
(1, 0, 0) 1 1/3
(0, 1, 1) 2 1/3
(1, 0, 1) 2 1/3
(1, 1, 0) 2 1/3
(1, 1, 1) 3 1

Clearly the partition induced by T =
∑
Xi does not depend on θ; hence T is sufficient.
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• As an example of a non-sufficient (or insufficient) statistic for θ, consider T2 = X1. Let us also
examine one of the conditional probabilities in more detail:

p [(0, 0, 0) | T = 0] =
P(X1 = 0, X2 = 0, X3 = 0 | T = 0)

P(T = 0)
= (1− θ)2

Here is the full partition induced by this statistic:

(X1, X2, X3) T2(X1, X2, X3) p(X1, X2, X3)
(0, 0, 0) 0 (1− θ)2

(0, 0, 1) 0 θ(1− θ)
(0, 1, 0) 0 θ(1− θ)
(1, 0, 0) 1 θ(1− θ)2

(0, 1, 1) 0 θ2

(1, 0, 1) 1 θ(1− θ)
(1, 1, 0) 1 θ(1− θ)
(1, 1, 1) 1 θ2

• Note that the likelihood itself induces a partition:

(X1, X2, X3) L(θ;X1, X2, X3)
(0, 0, 0) (1− θ)3

(0, 0, 1) θ(1− θ)2

(0, 1, 0) θ(1− θ)2

(1, 0, 0) θ(1− θ)2

(0, 1, 1) θ2(1− θ)
(1, 0, 1) θ2(1− θ)
(1, 1, 0) θ2(1− θ)
(1, 1, 1) θ3

This so-called likelihood partition provides a good test for whether or not statistics are sufficient. If
the likelihood partition has divisions (denoted by horizontal lines in the tables above) if is not sufficient.
Otherwise, it is sufficient:

(X1, X2, X3) T (X1, X2, X3) T2(X1, X2, X3) L(θ;X1, X2, X3)
(0, 0, 0) 0 0 (1− θ)3

(0, 0, 1) 1 0 θ(1− θ)2

(0, 1, 0) 1 0 θ(1− θ)2

(1, 0, 0) 1 1 θ(1− θ)2

(0, 1, 1) 2 0 θ2(1− θ)
(1, 0, 1) 2 1 θ2(1− θ)
(1, 1, 0) 2 1 θ2(1− θ)
(1, 1, 1) 3 1 θ3

Note that the partition induced by T2 “broke” a horizontal line; as such, it is not sufficient.

• A minimal sufficient partition is the coarsest sufficient partition. It can be shown that the likelihood
always generates the coarsest sufficient partition; hence, we adopt the following “test:” a statistic is
minimal sufficient (for θ) if the partition it induces is the same as the likelihood partition.

• In our example above, T1 generates the same partition as the likelihood and is therefore minimal
sufficient.

Rule-of-Thumb: If the likelihood partition creates divisions where the partition induced by T does
not, then T is not sufficient; otherwise it is sufficient. If it T sufficient, and partitions the sample
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space in the same way as the likelihood, then it is minimal sufficient.

5
A Useful Result

Theorem: Let θ̂n be an unbiased estimator of θ. If Var(θ̂n) → 0 as n → ∞, then θ̂n is a consistent
estimator of θ.

Proof: Since θ̂n is an unbiased estimator of θ, we have that E(θn) = θ. Let σθ̂n denote the standard deviation

of θ̂n (for a fixed sample size n); then, Chebyshev’s Inequality tells us that

0 ≤ P
(∣∣∣θ̂n − θ∣∣∣ ≥ kσθ̂n) ≤ 1

k2
(1)

for k > 0. Fix an arbitrary ε > 0; since equation 1 holds for any k > 0, it must hold for k = ε/θ̂n,
which yields

0 ≤ P

(∣∣∣θ̂n − θ∣∣∣ ≥ ε

��σθ̂n
·��σθ̂n

)
≤
σ2
θ̂n

ε2

Recognizing σ2
θ̂n

= Var(θ̂n), and simplifying terms, we obtain

0 ≤ P
(∣∣∣θ̂n − θ∣∣∣ ≥ ε) ≤ Var(θ̂n)

ε2

Now, take the limit as n→∞; if Var(θ̂n)→ 0 as n→∞, then the squeeze theorem (from mathematics)
tells us that

P
(∣∣∣θ̂n − θ∣∣∣ ≥ ε)→ 0

which is precisely the definition of the statement θ̂n
p→ θ. Therefore, we conclude that θ̂n is a consistent

estimator of θ. �

6
Definitions and Theorem

Central Limit Theorem: Let {Xi}ni=1 denote a sample of size n, taken from a distribution with mean
µ and standard deviation. Then

X̄ :=

(
1

n

n∑
i=1

Xi

)
→ N

(
µ,
σn

n

)
as n→∞

Theorem: Let θ̂ML denote the maximum likelihood estimator of a parameter θ. Then, as n→∞,

θ̂ML → N
(
θ,

1

nI(θ)

)
where I(θ) denotes the Fisher Information:

I(θ) = −E
[
∂2

∂θ2
`(θ)

]
; `(θ) = log-likelihood
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Wilks’ Theorem: If Λ denotes the generalized likelihood ratio, then, as n → ∞, −2 log(Λ) → χ2
df

where df = dim(Ω)− dim(ω0).

Factorization Theorem: Consider a parameter θ and the associated likelihood function L(x1, . . . , xn; θ).
Then T (x1, . . . , xn) is a sufficient statistic for θ if and only if the likelihood factors as

L(x1, . . . , xn; θ) = g [T (x1, . . . , xn), θ] · h(θ)

Cramér-Rao Lower Bound: Given an i.i.d. sample {Xi}ni=1 with likelihood f(x | θ) and an unbiased
estimator T = t(x1, . . . , xn), then (under certain regularity conditions)

Var(T ) ≥ 1

nI(θ)

Rao-Blackwell Theorem: Given an unbiased estimator θ̂ of θ with finite variance, and given statistic
T that is sufficient for T , define θ̃ := E(θ̂ | T ). Then, for all θ,

E[(θ̃ − θ)2] ≤ E[(θ̂ − θ)2]

In other words, a lower-variance estimate can be obtained by conditioning an unbiased estimator on a
sufficient statistic.

Efficiency: An estimator S of a parameter θ is said to be efficient if it attains the Cramér-Rao Lower
Bound; that is, if

Var(S) =
1

nI(θ)

Consistency: An estimator θ̂n of a parameter θ is said to be consistent if θ̂n
p→ θ; that is, if

lim
n→∞

[
P(|θ̂n − θ| ≥ ε)

]
= 0

for any ε > 0.

p−value: The p−value of a test is defined to be the smallest level of significance at which a test would
reject the null.
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7
Exercises

Problem 1: Hint: If R represents the number of
tests I reject out of these 100, what
distribution does R follow?

Suppose I perform a series of N = 100 independent hypothesis tests,
each at an α level of significance. Assuming that the null hypothesis
is true, what is the chance that I reject at least one of these tests?

Problem 2: We have already seen that, given a sample {Xi}ni=1 from an Exp(λ)

distribution, λ̂ML = 1/X̄. Let {Yi}ni=1 denote a sample from an
Exp(1/τ) distribution.

(a) Hint: Use λ̂ML.With minimal computation, find τ̂ML.

(b) Hint: What do we know about the
sum of i.i.d. exponential distributions?
How do exponential distributions
scale?

With minimal computation, find τ̂ML and determine its exact
distribution. That is, do not appeal to asymptotics.

Problem 3: The Nakagami Distribution, a distribution which bears many sim-
ilarities with to Gamma distribution, has p.d.f. given by

f(x;m,σ) =
2

Γ(m)σm
x2m−1 exp

{
−x

2

σ

}
; x ≥ 0

(here, m ≥ 1/2 and σ > 0 are population parameters). Let {Xi}ni=1

denote an i.i.d. sample from the Nakagami distribution with known
parameter m and unknown parameter σ.

(a) Find σ̂ML, the maximum likelihood estimate of σ.

(b) The expressions for E(X) and Var(X) are quite complicated; as
such, let them be denoted simply by µX and s2

X , respectively.
Assuming the sample size n is very large, what distribution does
σ̂ML approximately follow?

Problem 4: Suppose X ∼ Exp(λ) where λ > 0 is an unknown population param-
eter.

(a) Hint: Start by writing out the
integral, use Stat 134 tricks to avoid
computing it directly.

Find an expression for E(Xn) where n ∈ R+ is not necessarily
an integer.

(b) Let v := Var(
√
X). Find v̂ML, the maximum likelihood estima-

tor of v. Hint: Use equivariance.

Problem 5: Let {Xi}ni=1 denote an i.i.d. sample of size n from the Exp(λ) distri-
bution, where λ > 0 is an unknown parameter. Consider the following
hypotheses: [

H0 : λ = λ0

H1 : λ 6= λ0

where λ0 is a known constant.

(a) Find a sufficient statistic for λ.

(b) Construct the GLRT (Generalized Likelihood Ratio Test).

(c) Hint: Trying to derive the
mathematical expression for power
will be difficult. Rather, use what you
know about power to generate a rough
“intuitive” sketch.

Sketch the power curve of the test you derived in part (a).
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8
Answers

Problem 1: R ∼ Binom(100, α) =⇒ P(R ≥ 1) = 1− (1− α)100

Problem 2: We have already seen that, given a sample {Xi}ni=1 from an Exp(λ)

distribution, λ̂ML = 1/X̄. Let {Yi}ni=1 denote a sample from an
Exp(1/τ) distribution.

(a) τ̂ML = X̄.

(b) τ̂ML ∼ Gamma
(
τ, τ

2

n

)
.

Problem 3: (a) σ̂ML = 1
nm

∑n
i=1 x

2
i

(b) σ̂ML ∼ N
(
σ , 1

nm
σ2
− 2n
σ3

(s2X+µ2
X)

)
d
= N

(
σ , σ

3

n ·
1

σm−2(s2X+µ2
X)

)
Problem 4: Suppose X ∼ Exp(λ) where λ > 0 is an unknown population param-

eter.

(a) Γ(n+1)
λn

(b) Note: Recall that maximum
likelihood estimators are random
variables. As such, don’t be frightened
by the X in the final answer.

v̂ML = 1
X −

1
2

√
π
X

Problem 5: Let {Xi}ni=1 denote an i.i.d. sample of size n from the Exp(λ) distri-
bution, where λ > 0 is an unknown parameter. Consider the following
hypotheses: [

H0 : λ = λ0

H1 : λ 6= λ0

where λ0 is a known constant.

(a) T (X) = X̄e−λX̄ .

(b) Rejection region = {X̄e−λ0X̄ ≤ c}
(c) Curve should be u−shaped, attaining a minimum value of α at

λ0. Curve should stop at the y−axis (rate parameters of expo-
nential distributions cannot be negative), and tend asymptoti-
cally toward 1.

parameter value

Power

λ0

α

1
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